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Abstract

This paper proposes a novel vibration-based damage detection approach. The proposed technique is to actively

change the stability of a fixed point (equilibrium state) of a system (structure) and create a new stable fixed point or limit

cycle by applying a nonlinear feedback excitation. The nonlinear feedback excitation is designed such that a desired

bifurcation (e.g., subcritical Hopf bifurcation) can occur, and a limit cycle may emerge close to the original fixed point.

Hence, the deterioration of the structure during measurements is prevented, while the sensitivity of detection is

increased by identifying the bifurcation point. The morphing of the bifurcation boundary (the locus of the bifurcation

points) in the space of the controlled parameters of the nonlinear feedback excitation, together with the difference in the

amplitude of the emerging limit cycle caused by the variation in structural parameters are utilized as features for the

identification of parameter variations. To demonstrate the applicability and the potential (high sensitivity and

robustness) offered by the proposed approach, a prototypical case of a two-degree-of-freedom mass–spring–damper

system and a more complex example of a nonlinear panel forced by aerodynamic loads are investigated.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Vibration-based techniques are commonly used for the identification of parameter variations in applications such as

nondestructive evaluation and damage detection (Doebling et al., 1996; Farrar et al., 2001). Such detection methods

monitor changes in various vibratory characteristics of a structure. For instance, most current vibration-based damage

detection techniques observe changes in natural frequencies, modes of vibration, and frequency response functions

(Loh and Tou, 1995; Doebling et al., 1996; Smyth et al., 2000; Farrar et al., 2001). Other techniques use subspace

identification and updating (Abdalla et al., 1998; Pappa et al., 1998; Zimmerman, 2000; D’Souza and Epureanu,

2005a, b), wavelet analyses (Sohn and Farrar, 2001; Amizic et al., 2002; Amaravadi et al., 2002), and Ritz vectors (Cao

and Zimmerman, 1999; Zimmerman, 1999). All these methods have been well developed for monitoring linear

structures. Although there have been numerous studies showing that changes in these linear observed features can be

used to detect parameter variations indicative of the presence of damage, the low sensitivity of these features (to

damage) limits the applicability of such methods to cases where very precise measurements are available, or high levels
e front matter r 2005 Elsevier Ltd. All rights reserved.
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of damage are to be detected. To increase sensitivity to parameter variations, the concept of sensitivity enhanced control

was proposed through linear feedback control applied to a structure (Ray and Tian, 1999; Ray and Koh, 2003; Koh and

Ray, 2003). Such an approach reduces the modal frequencies to enhance their sensitivity to changes in stiffness.

One of the reasons for the limitations of current methods is that they are designed to avoid as much as possible the

influence of nonlinearities. In contrast, several other approaches to identify damage exploit attractor-based features

derived from nonlinear time series of the dynamics. Some attractors (such as limit cycles) have been used, but they are

not very sensitive, which makes it difficult to detect small incipient damage (Epureanu et al., 2004a, b). To enhance

sensitivity, nonlinearities have been exploited by characterizing chaotic attractors. For example, linear systems

subjected to chaotic excitation (Nichols et al., 2003a–d; Trickey et al., 2002) and (nonlinear) chaotic systems (with or

without excitation) (Epureanu and Yin, 2004; Epureanu et al., 2004b, c) have been explored to show that the use of

nonlinearity holds a great potential for damage detection. Furthermore, enhancing nonlinearity of linear or weakly

nonlinear systems by means of nonlinear feedback excitation has been demonstrated to provide significant advantages,

such as increased sensitivity (Epureanu et al., 2005a, b). Also, a variety of attractor-based metrics to characterize

quantitatively the geometry of attractors in state–space have been presented for identifying changes in geometric

features of attractors due to changes in system parameters (i.e., damage). Some of these methods use Lyapunov

exponents or attractor dimensions (Chancellor et al., 1996; Wang et al., 2001), a scalar tracking metric (Chelidze et al.,

2002; Cusumano et al., 2002; Chatterjee et al., 2002; Chelidze and Cusumano, 2004), and average local attractor

variance ratios (Nichols et al., 2003b; Todd et al., 2001), while others employ the statistical characterization of the

distribution of points in an attractor (Epureanu et al., 2004c, 2005a; Epureanu and Yin, 2004; Trendafilova, 2003a, b).

Most such approaches may detect the presence of damage while only very few (Epureanu et al., 2004c, 2005a; Epureanu

and Yin, 2004) are able to identify damage location and level. Most approaches have difficulties identifying multiple

damage also (Chatterjee et al., 2002; Chelidze and Cusumano, 2004; Todd et al., 2001; Trendafilova, 2003a, b). To

address these limitations, the application of pattern recognition techniques based on proper orthogonal decomposition

of the shape changes between attractors for damaged systems and the healthy system may provide the basis for

detecting multiple simultaneous damages (Epureanu and Yin, 2004).

In the present work, we proposed a distinct and novel damage detection method which is based on observing the

onset of bifurcations and the dynamics in the post-bifurcation regime. Although based on nonlinear phenomena, this

approach is very different from attractor-based techniques. The key idea of the proposed method is to actively change

the stability of the original fixed point (equilibrium state) of a system (structure) and create a new stable fixed point or

limit cycle by applying a nonlinear feedback excitation to the system (structure). As opposed to usual external

excitations, the nonlinear feedback excitation requires the active measurement of the dynamics and a feedback loop.

The specific form of the nonlinear feedback is designed based on the desired type of bifurcation. Hence, the proposed

technique is an active system interrogation approach based on nonlinear feedback. A bifurcation point is designed (in a

beneficial way) so that its location is sensitive to the variation in a desired parameter (e.g., damage). The actual

bifurcation point can be determined by varying the value of the gains in the nonlinear feedback excitation and recording

the value at which the bifurcation occurs. In the parameter space, the locus of the bifurcation points is in general a curve

which characterizes a large number of bifurcation points exhibiting the same type of bifurcation. This curve provides a

boundary separating the parameter space in regions where the dynamics is qualitatively distinct. In the proposed

approach, the bifurcation boundary and the corresponding emerging dynamics are used as features to detect multiple

simultaneous parameter variations (e.g., damages). Given a (measured) boundary for the damaged structure, multiple

simultaneous damages can be detected by quantifying the displacement of the measured boundary with respect to the

boundary for the healthy structure. Important advantages of the proposed approach are its possibility to be optimized

for each application through the optimization of the nonlinear feedback excitation, as well as its robustness to

measurement noise. To demonstrate the proposed approach, we consider first a prototypical case of a two-degree-of-

freedom mass–spring–damper system, and then investigate a more complex example of a nonlinear panel forced by

aerodynamic loads. The scenarios for the damage occurring in the structure are modelled as loss of stiffness of

structural elements.
2. Methodology

2.1. Background explanation

For most structures, dissipative mechanisms balance the external excitation such that the dynamics evolves onto an

invariant manifold of the state–space (the attractor). Examples of attractors of the dynamics of a structure are stable
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fixed points, stable limit cycles, and strange attractors (for chaotic systems). A qualitative change in the dynamics

(referred to as a bifurcation) may happen as parameters are varied. For example, fixed points or limit cycles can be

destroyed or created, or their stability can change when bifurcations occur. In the present work, the proposed damage

detection method is based on observing the onset of bifurcations and the emerging dynamics in the post-bifurcation

regime. The controlled parameters (gains) of the nonlinear feedback excitation are manipulated to interrogate the

system by identifying and characterizing bifurcation points.

To present this idea, an example based on a single-degree-of-freedom oscillator excited by a specific feedback is

discussed next. A more detailed discussion is also included in the following sections. The governing equation for this

system may be expressed as

_x

€x

� �
¼

0 1

�k=m �c=m

" #
x

_x

� �
þ

0

1=m

" #
ax� bx3
� �

, (1)

where m, c, and k are mass, damping, and stiffness parameters, a and b are the linear and nonlinear gains,

while the state vector is composed of the position x and the velocity _x. All of parameters are assumed to be positive.

An eigenvalue analysis of the Jacobian matrix shows that the origin in state–space (x ¼ 0, _x ¼ 0) is a stable fixed point

as long as the linear gain a is less than k. When a reaches k, a supercritical pitchfork bifurcation occurs as

shown in Fig. 1. Hence, the fixed point at the origin loses stability, and two new stable fixed points appear

at states (�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� kÞ=b

p
, 0). Thus, the stiffness k may be directly interrogated by varying the value of the linear

gain a to observe the onset of bifurcation in this special case. Therefore, the change in stiffness due to damage

can be detected by distinguishing between the bifurcation point for a healthy and a damaged system. One may

notice that the linear feedback ax is designed to destabilize the system, and the nonlinear feedback �bx3 is

designed to limit the system displacement in the post-bifurcation regime. Also, the type of bifurcation and the

dynamics in the post-bifurcation regime depend on the form of the nonlinear feedback and the nonlinear gain. For

example, if a different kind of nonlinear feedback (such as bx3 � gx5) is used to replace �bx3 in Eq. (1), then a different

type of bifurcation (a subcritical pitchfork bifurcation) may occur when a is equal to k as shown in Fig. 1. In the

case of a subcritical pitchfork bifurcation, the jump in displacement for the system at the bifurcation point

(a ¼ k) can be detected, and it is equal to
ffiffiffiffiffiffiffiffi
b=g

p
. From the viewpoint of interrogating for k, this jump can facilitate to

identify the bifurcation point more precisely. However, a jump that is too large may break the system. Thus,

the nonlinear gains b and g are designed such that the jump at a ¼ k is as small as possible while maintaining

high enough sensitivity.

This simple example was presented to introduce the basic idea of the proposed damage detection technique. Also,

some important issues regarding the design of the nonlinear feedback excitation used in this technique have been

addressed. The details of the methodology are presented in the next section.
2.2. Damage detection technique

To apply this idea for damage detection to a more realistic and complex structure, consider first that a discretized

model of the structure (e.g., based on a finite element or a finite difference formulation) is available. The equation of

motion for the discretized structural model can be expressed as

M €xþ C _xþ Kx ¼ F, (2)
0
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Monitored bifurcations
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x

Fig. 1. Schematic plot of the equilibrium location of a single-degree-of-freedom oscillator forced by nonlinear feedback excitation

undergoing a supercritical (left) and subcritical (symmetric: center, and imperfect: right) pitchfork bifurcation.
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where matrices M, C, and K are mass, damping, and stiffness matrices, and x is the vector of nodal displacements. By

introducing a new vector v ¼ _x, Eq. (2) can be expressed in state–space representation as

_X ¼ AXþ BF, (3)

where

X ¼ ½x v�T,

F ¼ GXþ F̄ðXÞ,

A ¼
0 I

�M�1K �M�1C

� �
; B ¼

0

M�1

� �
.

Herein, the nonlinear feedback excitation F is a function of x and _x, and consists of linear feedback GX and nonlinear

feedback F̄ðXÞ, where G denotes the linear gain matrix.

Generally, for most autonomous systems, the origin in the state–space is a stable fixed point (equilibrium state) to

which the dynamics converges. The key idea of the proposed method is to actively change the stability of the fixed point

at the origin by tuning the values of the entries in the gain matrix G, and to design the nonlinear feedback F̄ðXÞ such

that a new stable fixed point or a limit cycle can emerge close to the origin. For simplicity, the bifurcation caused by the

designed nonlinear feedback excitation is chosen to be a co-dimension one bifurcation, which includes two cases. One

case is where one of the real eigenvalues of the Jacobian matrix at the origin passes through the imaginary axis from left

to right. The other case is where one pair of complex conjugate eigenvalues cross the imaginary axis from left to right. It

is well known that the former is related to a pitchfork bifurcation and the latter is associated with a Hopf bifurcation. In

the proposed approach, the changes in the locus of bifurcation points in the parameter space are exploited to identify

the changes in structural parameters caused by damage. Whether numerically simulating or experimentally

implementing this approach, the locus of bifurcation points can be obtained by varying the values of the controlled

parameters in the gain matrix G and recording the specific values at which a pitchfork or Hopf bifurcation occurs.

Hence, a boundary separating the parameter space in regions where the dynamics is qualitatively distinct is identified.

Mathematically, the analytical equation characterizing the bifurcation boundary can be obtained by exploring the

eigenvalues of the Jacobian matrix at the origin. For the dynamics of the structure governed by Eq. (3), the Jacobian

matrix at the origin can be expressed as Aþ BG, and its characteristics polynomial can be obtained as

jAþ BG� lIj ¼ 0. (4)

The exact equation describing the pitchfork bifurcation boundary can be obtained by substituting l ¼ 0 into Eq. (4).

For the Hopf bifurcation boundary, l is substituted with �oj into Eq. (4) (where j ¼
ffiffiffiffiffiffiffi
�1
p

, and o is real and positive).

The resulting equations (corresponding to the real and imaginary parts) need to be solved simultaneously to obtain the

exact boundary equation. Also, one may note that Eq. (4) is independent of the nonlinear feedback, which means that

the determination of bifurcation points on the boundary is not affected by the nonlinear feedback. However, the

nonlinear feedback can play an important role in the post-bifurcation behavior of the system, such as determining

the subcritical or supercritical nature of the bifurcation. Based on the analytical solution for the bifurcation boundary,

the relationship between system parameters and bifurcation points can be clearly demonstrated, and explains why the

parametric variations in the system can be interrogated by monitoring the morphing of the bifurcation boundary.

To address these issues, a damped two-degree-of-freedom spring–mass system shown in Fig. 2 is considered. The

mass, damping, and stiffness matrices (M, C, and K) in the equation of motion of this system are expressed as

M ¼
m1 0

0 m2

" #
; C ¼

c1 þ c2 �c2

�c2 c2

" #
; K ¼

k1 þ k2 �k2

�k2 k2

" #
.

m1

f1 f2

c1 c2

m2

k2k1

x2x1

Fig. 2. A simple two-degree-of-freedom system subjected to nonlinear feedback excitation.
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The goal of the design of the linear feedback GX is to change the stability of the fixed point at the origin. To achieve

this objective, an intuitive way is to decrease the stiffness of the system as demonstrated in a simple example in Section

2.1. Therefore, the entries in the gain matrix G corresponding to x1 and x2 are chosen to be the controlled parameters.

For simplicity, in this study, only two entries are considered variable while the others are considered fixed. As a result,

the bifurcation boundary is a curve in the parameter space spanned by the two controlled variable parameters. Also, a

single excitation is considered to be applied to the systems in the following examples. Herein, the feedback excitation is

designed as

F ¼ GXþ F̄ðXÞ

¼
0 0 0 0

a b 0 0

" # x1

x2

_x1

_x2

2
666664

3
777775þ

0

f ðx1;x2Þ

" #
¼

0

ax1 þ bx2 þ f ðx1; x2Þ

" #
, ð5Þ

where the nonlinear feedback f ðx1; x2Þ is discussed in detail in the next section. Furthermore, the governing equation for

this system can be expressed in the state–space form of Eq. (3) with

A ¼

0 0 1 0

0 0 0 1

�ðk1 þ k2Þ=m1 k2=m1 �ðc1 þ c2Þ=m1 c2=m1

k2=m2 �k2=m2 c2=m2 �c2=m2

2
66664

3
77775,

B ¼

0 0

0 0

1=m1 0

0 1=m2

2
66664

3
77775; X ¼

x1

x2

_x1

_x2

2
6664

3
7775.

Thus, the Jacobian matrix at the origin can be obtained as

Aþ BG ¼

0 0 1 0

0 0 0 1

�ðk1 þ k2Þ=m1 k2=m1 �ðc1 þ c2Þ=m1 c2=m1

ðaþ k2Þ=m2 ðb� k2Þ=m2 c2=m2 �c2=m2

2
66664

3
77775.

Based on Eq. (4), one may specify the conditions for pitchfork or Hopf bifurcations (l ¼ 0 or l ¼ �oj). Then, the
exact equations describing the pitchfork and the Hopf bifurcation boundaries can be obtained as

�ðk1 þ k2Þ=m1 k2=m1

ðaþ k2Þ=m2 ðb� k2Þ=m2

�����
����� ¼ 0 (6)

and

f2
�
½m1b�m2k1 � ðm1 þm2Þk2 � c1c2�

m1m2
f�
½k2aþ ðk1 þ k2Þb� k1k2�

m1m2
¼ 0, (7)

where

f ¼
½c2aþ ðc1 þ c2Þb� k1c2 � k2c1�

m1c2 þm2c1 þm2c2
.

Eqs. (6) and (7) clearly show that the bifurcation boundaries are dependent on the system parameters. Thus,

parametric variations will cause geometric changes of the bifurcation boundaries. To demonstrate quantitatively the

morphing of the bifurcation boundaries, we choose the system parameters of the healthy system as m1 ¼ m2 ¼ 1,

k1 ¼ k2 ¼ 1, c1 ¼ c2 ¼ 1, while loss of spring stiffness is modelled as damage. For example, k1 ¼ 0:9 or k2 ¼ 0:8
represent different levels of damage occurring at different locations. Fig. 3 shows that pitchfork and Hopf bifurcation

loci provide boundaries separating the parameter space into three regions. When the parameters ða; bÞ in the linear gain

matrix G are within the lower center region, the origin is a stable fixed point. If the parameters ða; bÞ cross the Hopf
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Fig. 4. Hopf and pitchfork bifurcation boundaries for the healthy system and damaged systems where different parametric variations

in k1 are used to model different levels of damage.
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Fig. 3. Loci for the pitchfork and Hopf bifurcations in the parameter space ða; bÞ for a two-degree-of-freedom spring–mass–damper

system subjected to a nonlinear feedback excitation, where a and b are controlled parameters in the linear gain matrix G.
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bifurcation boundary and enter the left region, the fixed point at the origin loses its stability and a new stable limit cycle

is created close to the origin. In contrast, if the parameters ða; bÞ cross the pitchfork bifurcation boundary and enter the

right region, the fixed point at the origin also becomes unstable and two new stable fixed points are born near the origin.

Fig. 4 shows that the Hopf and pitchfork bifurcation boundaries move and deform when the parameter k1 varies (due

to damage). In this figure, one may note that the bifurcation locus in some regions of parameter space is more sensitive

to the variation in parameters than other regions. This implies that the range of the controlled parameters used in the

gain matrix G can be designed in a beneficial way so that the movement of the bifurcation boundary is sensitive to the

variation in a desired parameter (damage). Also, we consider that the stiffnesses of the two springs in the system are

changed singly or simultaneously to simulate different locations of damage and multiple damages. Fig. 5 shows that the

Hopf and pitchfork bifurcation boundaries for different damage cases shift and deform in different ways with respect to
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the bifurcation boundaries (the solid curves) for the healthy system (k1 ¼ k2 ¼ 1). The morphing of these boundaries is

essential for detecting damage location.

Also, multiple simultaneous damages may be detected by quantifying the displacement of the measured boundary with

respect to the boundary for the healthy system. To explain this, the bifurcation boundary curve can be considered as a

function of the identified parameters (k1 and k2) and the controlled parameters (a and b), and expressed as a ¼

gðb; k1; k2Þ for a given set of k1 and k2. We are interested in understanding the sensitivity of the movement of the curve

to the variation in k1 and k2. Suppose there is no variation in parameter b and the variations in other parameters are

small. The displacement Da of the measured boundary (for the damaged system) with respect to the reference boundary

(i.e., for the healthy system) can be written as

Da ¼
qg

qk1
Dk1 þ

qg

qk2
Dk2. (8)

The variation in a due to the variation in k1 and k2 can be described by the sensitivity functions qg=qk1 and qg=qk2,

which are functions of k1, k2, and b. The shapes of qg=qk1 and qg=qk2 can be visualized by fixing one of these three

variables k1, k2, and b. Figs. 6 and 7 show the shapes of qg=qk1 and qg=qk2 for k1 ¼ 1 and separately for k2 ¼ 1. From

these two plots, one may note that the shape of qg=qk1 and qg=qk2 are linearly independent. According to Eq. (8), the

shape of Da is a linear combination of the two surfaces in each plot. Thus, the linear independence of qg=qk1 and qg=qk2

ensures that we may identify the displacement of the boundary for the system with multiple simultaneous damages of

small magnitude as a linear combination of the displacements of the boundaries for single damages at different

locations. In addition, the stiffnesses k1 and k2 may be reconstructed by fitting Eq. (7) to the measured data points ða; bÞ
in a least-squares sense.To model the possible errors in the data-collection procedure or caused by the limited resolution

in varying the controlled parameter a, the values of a at nine data-points chosen on the boundary for the case of

k1 ¼ k2 ¼ 0:9 are perturbed with random noise (normal distribution with zero mean and 0:05 standard deviation). A

total of 10 000 sets of noisy data-points were generated. The mean and the standard deviation of the noisy data-points

are shown in Fig. 8. Then, the stiffnesses k1 and k2 are reconstructed for each set. The mean of the stiffnesses k1 and k2

calculated are 0:8971 and 0:8972, and the corresponding standard deviations are 0:0293 and 0:0331. Compared with the

exact value of the stiffness ðk1 ¼ k2 ¼ 0:9Þ, the reconstructed stiffnesses k1 and k2 based on the noisy data are very

accurate, which demonstrates that the technique of fitting the bifurcation boundary to the measured data-points is

robust for detecting multiple simultaneous damages. Moreover, even if the explicit expression of the bifurcation

boundary (such as Eq. (7)) is not available (e.g., for a more complex system), the system parameter still can be

interrogated by the same procedure based on Eq. (4) and the condition of bifurcation onset. Hence, when nonlinear

feedback excitation is used for model-based identification, the accuracy of the model affects the results. Nonetheless, the

proposed approach can be used also when no model is available. In such a case, however, the morphing of the

bifurcation boundaries from experimental measurements are needed to reconstruct parameter variations.
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3. Nonlinear feedback excitation

In Section 2.2, we have discussed that the linear component of the feedback excitation GX is designed to destabilize

the system by forcing it to cross the bifurcation boundary by tuning the controlled parameters in the linear gain matrix

G. After the bifurcation, it is desirable that the system be stable. The stabilization in the post-bifurcation regime is

accomplished by the nonlinear component of the feedback excitation F̄ðXÞ. As a result, nonlinear feedback excitation

plays an important role in the dynamics of the system in the post-bifurcation regime. As discussed for an example of a

single-degree-of-freedom oscillator in Section 2.1, the supercritical or subcritical character of the bifurcation is

determined by the form of nonlinear feedback. The magnitude of the amplitude jump for subcritical bifurcations is also

controlled by the parameters in the nonlinear feedback. In general, we seek the form of nonlinear feedback excitation

which causes a subcritical Hopf bifurcation. There are two main reasons why a subcritical Hopf bifurcation is

preferable. The first reason is that the emerging limit cycle oscillation after the bifurcation occurs provides features

which are useful for detecting damage. The second reason is that the amplitude jump at the bifurcation point can

facilitate the identification of the bifurcation boundary more precisely in an experimental setting. The only concern is

that a large-amplitude jump may deteriorate the system. Thus, nonlinear feedback should be designed such that the

amplitude of the limit cycle oscillation is as small as possible while being also large enough to accommodate the

sensitivity of the measurement instrumentation. Finding the form of nonlinear feedback excitation that creates desired

bifurcations may start with the understanding of the normal form of such bifurcations. In the case of two-degree-of-

freedom oscillators presented in Section 2.2, first, we consider the following system which gives the canonical form for

subcritical Hopf bifurcations:

_r ¼ mrþ r3 � r5,

_y ¼ o, (9)

where m is the parameter that controls the stability of the fixed point at the origin, and o is a constant. Suppose the

states (x1, x2, y1, and y2) satisfy the relationships: x1 ¼ r cos y, x2 ¼ r sin y, y1 ¼ _x1, and y2 ¼ _x2. Then, the dynamics

of the state based on Eq. (9) can be expressed as

_x1 ¼ y1,

_x2 ¼ y2,

_y1 ¼ m2x1 � mox2 � oy2 þ 4mðx2
1 þ x2

2Þ þ ð3� 6mÞðx2
1 þ x2

2Þ
2
� 8ðx2

1 þ x2
2Þ

3
þ 5ðx2

1 þ x2
2Þ

4
� �

x1

� o ðx2
1 þ x2

2Þ � ðx
2
1 þ x2

2Þ
2

� �
x2,

_y2 ¼ mox1 þ m2x2 þ oy1 þ 4mðx2
1 þ x2

2Þ þ ð3� 6mÞðx2
1 þ x2

2Þ
2
� 8ðx2

1 þ x2
2Þ

3
þ 5ðx2

1 þ x2
2Þ

4
� �

x2

þ o ðx2
1 þ x2

2Þ � ðx
2
1 þ x2

2Þ
2

� �
x1.

This derivation provides insights into how one may design the simplest form of nonlinear feedback needed to cause a

subcritical Hopf bifurcation. Specifically, the cubic terms are essential, as it is possible to cancel out all other higher-

order terms through nonlinear coordinate transformations while maintaining topological equivalence for the

state–space portrait near the bifurcation point. Therefore, in Eq. (5) in Section 2.2, f ðx1; x2Þ is simply assumed to be

bx3
2, where b is the controlled parameter for nonlinear feedback excitation. To demonstrate that a subcritical

bifurcation can occur while such a nonlinear feedback is exploited, we choose a ¼ �3 and b ¼ 1 in Eq. (5) for the

healthy system (m1 ¼ m2 ¼ 1, k1 ¼ k2 ¼ 1, c1 ¼ c2 ¼ 1). Fig. 3 shows that these chosen values for a and b are located

exactly on the Hopf bifurcation boundary. Thus, the feedback excitation is designed as F ¼ ½0� 3x1 þ x2 þ bx3
2�
T. The

resulting equation _X ¼ AXþ BF can be expressed as

_x1

_x2

_y1
_y2

2
66664

3
77775 ¼

0 0 1 0

0 0 0 1

�2 1 �2 1

1 �1 1 �1

2
6664

3
7775

x1

x2

y1

y2

2
66664

3
77775þ

0 0

0 0

1 0

0 1

2
6664

3
7775

0

�3x1 þ x2 þ bx3
2

" #
.

Then, the dynamics of the system can be obtained by integrating the above system of differential equations with an

adequate time marching scheme. Fig. 9 shows the stable limit cycle emerging through a Hopf bifurcation. The limit

cycle is projected onto the subspace spanned by x1 and y1 for different values of the controlled parameter b. Fig. 9
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Fig. 9. The emerging stable limit cycle at the Hopf bifurcation point projected onto the subspace spanned by x1 and y1 for different

values of the controlled parameter b.
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clearly shows that the chosen form of nonlinear feedback causes a subcritical Hopf bifurcation. Also, the size of the

amplitude of the limit cycle is dependent on the value of b. Thus, the appropriate amplitude jump at the bifurcation

point can be designed by adjusting the value of b.
In this section, we have used an example of a two-degree-of-freedom oscillator to introduce the strategy of designing

nonlinear feedback excitation to cause desired bifurcations. Next, we focus on a more complex aeroelastic system.
4. Damage detection for an aeroelastic system

The aeroelastic system considered here is composed of a nonlinear panel forced by flow-induced loads (as depicted in

Fig. 10). Such a system is of interest in online damage detection in modern aircraft and the next generation of reusable

launch vehicles. It has been shown that this system undergoes a variety of dynamical behaviors (Dowell, 1975, 1982).

The panel may remain statically flat, buckle into a statically deformed shape, flutter with a periodic motion, or vibrate

chaotically. These various dynamics of the panel depend mainly on two parameters: the magnitude of the in-plane

compressive load acting on the panel, and the velocity of the fluid flow interacting with the panel. In addition to these

two parameters, it is still possible for the dynamics of the panel to be qualitatively changed by actively applying a

feedback excitation on the panel through the use of sensors and actuators. For example, the initially flat panel under a

small in-plane compressive load and low flow velocity may be caused to flutter or buckle due to the feedback excitation.

Therefore, the bifurcation boundary in parameter space spanned by the controlled parameters in the feedback

excitation can be obtained by varying the controlled parameters and observing the onset of bifurcations. Finally,

multiple simultaneous damages occurring in the panel may be detected by visualizing the movement and deformation of

the bifurcation boundary, and by observing the post-bifurcation dynamics.

4.1. Aeroelastic model forced by feedback

The panel is considered as a nonlinear, one-dimensional, homogeneous, isotropic, and elastic thin plate with pin-

supported end points. The von Karman strain–displacement relation is used to account for the structural nonlinearity

resulting from the coupling of the in-plane stretching and out-of-plane deflection of the panel. The flow is modelled by

piston theory (Lighthill, 1953) which provides a good approximation for the unsteady flow forces for high supersonic

Mach numbers. In addition to aerodynamic loads, the panel is also excited by a feedback loop for the purpose of damage

detection. Finally, a local reduction in bending stiffness in a small region around various locations along the panel is

considered as a damage scenario. The governing equation for the complete aeroelastic system is obtained as follows:

DW 0000 þ rh €W � EhZ0W 00 �
Eh

2l

Z l

0

W 02ðxÞdx
� �

W 00 þ
r1U2

1

M
W 0 þ

1

U1
_W

� �
þ Dps � PðX ; tÞ ¼ 0, (10)
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Fig. 10. Cross-section through an aeroelastic system composed of a panel subjected to unsteady supersonic flow.
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where W 0 and _W represent the spatial and time derivatives of the panel deflection W, D is a coefficient characterizing the

bending stiffness of the panel (D ¼ Eh3=12ð1� n2Þ, with E being Young’s modulus, and n being Poisson’s ratio). Also, r
is the mass density of the panel, h is the panel thickness, l is the panel length, Z0 is the initial axial strain of the panel, r1
and U1 are the upstream far field density and velocity of the flow, M is the local Mach number, Dps is the static pressure

difference across the plate (at zero flow velocity), and PðX ; tÞ is the transverse distributed force. The bending stiffness and

Young’s modulus in the damaged region of the panel are denoted by D̄ and Ē, and are distinct from D and E for the

healthy regions.

Next, nondimensional variables x, w, and t are defined as x ¼ X=l, w ¼W=h, and t ¼ t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhl4=D

q
, and Eq. (10) can

be nondimensionalized as follows:

Srw
0000 þ €w� SrRxw00 � SrS

Z 1

0

w0
2
ðxÞdx

� �
w00 þ lw0 þ

ffiffiffiffiffiffi
ml
M

r
_wþ

l4

Dh
Dps � F ðx; tÞ ¼ 0, (11)

where w0 ¼ qw=qx, _w ¼ qw=qt, and F ðx; tÞ ¼ l4PðX ; tÞ=ðDhÞ. The corresponding nondimensional coefficients in Eq. (11)

are as follows: in-plane pre-load Rx ¼ EhZ0l2=D; bending–stretching coefficient S ¼ Eh3=ð2DÞ ¼ 6ð1� n2Þ; flow

velocity l ¼ ðr1U2
1l3Þ=ðMDÞ; and flow mass ratio m ¼ ðr1lÞ=ðrhÞ. The coefficient Sr is the stiffness reduction ratio

(Sr ¼ D̄=D) characterizing the damage level in the panel. For example, Sr equals unity when no damage is present.

Also, the corresponding boundary conditions at the supports can be written in nondimensional form as

w00ðx ¼ 0; tÞ ¼ 0 and wðx ¼ 0; tÞ ¼ 0,

w00ðx ¼ 1; tÞ ¼ 0 and wðx ¼ 1; tÞ ¼ 0.

In this study, we consider that the panel is subjected to a small in-plane compressive load and low velocity flow such

that, in the absence of the nonlinear feedback excitation, the panel is flat and stable. Because the coupling of the in-

plane stretching and out-of-plane deflection of the panel is considered, the resulting structural nonlinearity

corresponding to S
R 1
0 w02ðxÞdx

h i
w00 in Eq. (11) provides a strong stabilization effect for the panel dynamics. Therefore,

the feedback excitation is designed only for destabilizing the aeroelastic system so that the panel may flutter or buckle

when bifurcations occur. Herein, a concentrated feedback force (in terms of transverse and angular displacements

measured by a sensor) is considered to be applied to the panel through an actuator. Accordingly, the

nondimensionalized feedback force F ðx; tÞ in Eq. (11) can be expressed as

F ðx; tÞ ¼ f ðtÞdðx� xaÞ and f ðtÞ ¼ awðxs; tÞ þ bw0ðxs; tÞ, (12)

where xa and xs are, respectively, the location of the actuator and the sensor, and a and b are the controlled parameters

to be varied for identifying the bifurcation boundary.

4.2. Numerical results

The numerical approach for computing the dynamics of the aeroelastic system is to first discretize the governing

partial differential equation in space by a central finite difference scheme, and then to integrate the resulting system of

ordinary differential equations in time by a time marching scheme adequate for stiff systems. The computational

domain is uniformly divided into m sections. All the spatial derivatives in the governing equations and the boundary

conditions satisfied at the discretization points are approximated by the central finite difference formulas of second-

order accuracy. Also, one ghost node is needed at each end of the panel in a central finite difference formulation. As a

result, the set of ordinary differential equations for the discretized system of the panel can be expressed in state–space
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matrix form as

I 0

0 X

� �
_w

_v

� �
þ

0 �I

U W

� �
w

v

� �
¼

0

q

" #
, (13)

where the vector w represents the displacements at all discretization points, v is the time derivative of w, and q is the

force vector corresponding to the special case of the feedback force described in Section 4.1 (i.e.,

q ¼ ½0; . . . ; 0;F ðtÞ=Dx; 0; . . . ; 0�). The matrices X, U, and W depend on aeroelastic properties and also on w. Hence,

Eq. (13) is nonlinear. The dynamics of the panel governed by Eq. (13) was solved by using the Gear method in this

study. A converged solution has been obtained for a number of sections m ¼ 80 and a time step Dt ¼ 0:01. In this study,

a set of parameters of the aeroelastic system have been selected as l ¼ 100, Rx ¼ �p2, n ¼ 0:252, and m=M ¼ 0:01,
which corresponds to the case where the panel dynamics is stable and flat. The feedback excitation designed in Eq. (12)

is exploited to change the stability of the panel and force the panel to flutter with a small amplitude periodic motion in

the post-bifurcation regime. Herein, we assume that the transverse and angular displacement at the middle point of the

panel may be measured by a sensor, and the force from a feedback loop acts on the middle point of the panel through

an actuator (i.e., xs and xa are both equal to 1
2
in Eq. (12)).

The subcritical Hopf bifurcation boundary in the parameter space spanned by the controlled parameters a and b in

Eq. (12) can be obtained by varying the value of a for fixed values of b until the onset of bifurcation is observed. As

demonstrated in Fig. 11, at the bifurcation point (a ¼ �468:7 and b ¼ 0), the projection of the emerging dynamics of
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Fig. 11. The limit cycle projected onto the subspace spanned by the displacement and the velocity at the middle point of the healthy

panel (x ¼ 1
2
) at the bifurcation point (a ¼ �468:7 and b ¼ 0).
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Fig. 12. The first dominant mode present in the dynamics of the panel when a bifurcation occurs (a ¼ �468:7 and b ¼ 0).
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the healthy panel onto the subspace spanned by the displacement and the velocity at the middle point of the

panel (x ¼ 1
2
) is a limit cycle with a small amplitude, which shows that the designed feedback successfully induces a

subcritical Hopf bifurcation causing the panel to flutter. Also, by analyzing the snapshots of the panel flutter

based on proper orthogonal decomposition (Epureanu et al., 2004a, b; Azeez and Vakakis, 2000), we conclude that

there is only one dominant mode present in the dynamics of the panel, as shown in Fig. 12. Furthermore, this

dominant mode is nearly identical to the eigenmode corresponding to the pair of eigenvalues (of the Jacobian matrix of

Eq. (13) at the equilibrium state of the panel) located exactly on the imaginary axis of the complex plane at the

bifurcation point (a ¼ �468:7 and b ¼ 0). Therefore, the dominant frequency and the dominant mode shape of

the panel dynamics at the bifurcation point are related to the form of the linear component of the feedback and the

controlled parameters.

Next, several damage scenarios are considered to investigate the sensitivity of the proposed approach to the variation

in structural parameters used to model the damage, and to demonstrate its effectiveness in detecting multiple

simultaneous damages. The damage scenarios include different levels (10% and 20%) of bending stiffness loss of the

panel expanding along 1:25% of panel length around different locations (at the quarter point x ¼ 1
4
and at the middle

point x ¼ 1
2
). Fig. 13 shows that Hopf bifurcation boundaries for the panels with damage around x ¼ 1

2
move

monotonically and proportionally away from the boundary for the healthy panel when the damage level increases. In

Fig. 14, one may note that the boundaries for the panel with damage around x ¼ 1
4
and the healthy panel are not
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Fig. 13. Hopf bifurcation boundaries for the healthy panel and damaged panels with different levels of damage.
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distinguishable, and so are the boundaries for the panels with damage around x ¼ 1
2
and with multiple damages both

around x ¼ 1
2
and 1

4
. These results show that the bifurcation boundary due to the specific designed feedback (where xs

and xa are both equal to 1
2
in Eq. (12)) is not sensitive to damage occurring around x ¼ 1

4
. Hence, multiple simultaneous

damages around x ¼ 1
2 and 1

4 are difficult to detect because the movement of the boundary for the system with

multiple simultaneous damages with respect to the boundary for the healthy system is a linear combination

of the movements of the boundaries for the systems with single damages at different locations (as discussed in

Section 2.2). Nevertheless, in addition to the observation of the movement of the bifurcation boundary, the resulting

dynamical features of the panel along the bifurcation boundary may also be utilized to detect damage. These features

include the dominant frequency, the shape of the dominant mode, and the maximum amplitude of the panel flutter.

The dominant frequency and the corresponding mode shape are related to the eigenanalysis of the Jacobian

matrix when the system loses stability due to the linear feedback. Thus, the sensitivities of these two features to

parametric variation are similar to ones for the bifurcation boundary, and are small for some cases, as shown in Fig. 14.

In contrast, the amplitude of the flutter is mainly controlled by the structural nonlinearity and has high sensitivity to

parametric variation. Fig. 15 shows the maximum displacement amplitude of the emerging panel flutter (limit

cycle oscillation) at x ¼ 1
2
along the bifurcation boundaries corresponding to different values of b for the healthy panel
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Fig. 15. The maximum displacement amplitude of the emerging panel flutter (limit cycle oscillation) at x ¼ 1
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along the bifurcation

boundaries corresponding to different values of b for the healthy panel and the different damaged panels shown in Fig. 14.
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ARTICLE IN PRESS
S.-H. Yin, B.I. Epureanu / Journal of Fluids and Structures 21 (2005) 543–559 557
and different damaged panels. Also, Fig. 16 shows the limit cycles projected onto the subspace spanned by the

displacement and velocity at x ¼ 1
2
for the healthy panel and the different damaged panels at the bifurcation point

(corresponding to b ¼ 0 in Fig. 15). From these two figures, one may note that the flutter amplitude for the various

damaged panels changes dramatically and very differently from the healthy panel dynamics, which means that a single

damage at different locations of the panel or multiple simultaneous damages in the panel may be detected based on the

flutter amplitude at the bifurcation point. Fig. 15 also reveals that nonlinearity plays an important role in enhancing

sensitivity for damage detection.

Finally, we present a quantitative comparison of sensitivity of the proposed approach for damage detection

with a common linear method based on the modal frequencies as its features. Herein, the damage in the

panel is considered as 10% loss of the bending stiffness of the panel expanding along 1:25% of panel length around the

middle point x ¼ 1
2
of the panel. The relative difference in the first modal frequency between the damaged panel and

the healthy panel is 0:15%. In contrast, the relative difference in the controlled parameter a at the Hopf bifurcation

point (where b ¼ 0) between the damaged panel and the healthy panel is 9:7%, which shows that sensitivity is

highly increased.

The lack of sensitivity in detecting the damage around the quarter point x ¼ 1
4
of the panel leads to difficulties in the

parameter reconstruction technique demonstrated in Section 2.2. Nevertheless, these difficulties are alleviated by

observing the resulting dynamical features of the panel in the post-bifurcation regime.
5. Conclusions and discussion

In this article, the key idea of a novel proposed damage detection approach has been discussed by exploring

a single-degree-of-freedom oscillator forced by a nonlinear feedback. The detailed methodology has been

formulated and then demonstrated for an example of a two-degree-of-freedom mass–spring–damper system. In

addition, the strategy of designing nonlinear feedback excitation that causes desired bifurcations has also been

addressed. Finally, a more complex and practical example as a nonlinear panel interacting with an unsteady

supersonic flow has been investigated. Damage has been modelled as a loss of stiffness in a portion of the plate. The

results presented in these examples have shown that the proposed damage detection approach provides high sensitivity

and high robustness, and may be exploited to detect multiple simultaneous damages. Nonetheless, the energy

required by the proposed approach to be injected in the system for interrogation can be higher than other approaches,

depending on the particular application. For some applications, this energy (and the resulting stresses) can be

large, as would be the case for several civil structures for example. However, aerospace applications that the

proposed approach is envisioned for have considerably distinct features. For example, wings occasionally operate in

regimes that are close to the stability boundaries, or even go beyond these limits such as in the case of wings

exhibiting limit cycle oscillations during operation. In these cases, the energy (and stress) required to interrogate the

system using the proposed approach is not high (and may be harvested through the manipulation of the operational

loads). Hence, the level of energy injection is similar to other (global) vibration-based techniques based on modal

properties. Nonetheless, there are also other techniques that use considerably lower energy, such as is the case of

detection using ultrasound, but these are local approaches and typically require a larger number of sensors or have

other limitations.

The detection of the bifurcation point can be difficult for many systems exhibiting supercritical-type bifurcations,

where there is no clear jump from a small amplitude solution to a large amplitude solution. The use of subcritical

bifurcations alleviates this problem, as subcritical bifurcations are typically sharp, so that the bifurcation point is well

defined and reproducible (while also allowing for the estimation of the detection error).

A related matter is the case where g is not known analytically. Then the approach presented herein can be used not as

a model-based approach, but as a model-less approach. Of course, since a model is not available, more measurements

are required. Specifically, the bifurcation boundary is measured and its morphing is determined (experimentally) for

various system parameters that are of interest. Next, the morphing of the boundary is used for damage detection as

shown in Section 4.2 for an aeroelastic system.

Symmetry breaking is a factor that affects most real systems. Surely, a supercritical bifurcation point is affected

significantly by symmetry breaking. To account for that, the approach herein is most advantageous if designed to

monitor (as a feature) the jump at the appearance/disappearance of the large amplitude solution. That solution is not

topologically affected by symmetry breaking, and hence, the bifurcation morphing approach is marginally affected,

especially for model-less applications. These issues are most effectively estimated in experimental results which are

beyond the scope of this paper, and are the focus of ongoing and future work.
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